
E

H
a

b

c

d

a

A
R
R
A

K
A
O
S
D

1

i
o
s
g
i
m
a
q
m
v
t
o
v
i
a
t

G
i
S
I

Q
T

1
d

Chemical Engineering Journal 160 (2010) 698–707

Contents lists available at ScienceDirect

Chemical Engineering Journal

journa l homepage: www.e lsev ier .com/ locate /ce j

stimation of alkyd reactors with discrete-delayed measurements�

éctor Hernández-Escotoa,d,∗, Teresa Lópezb,d, Jesús Alvarezc

Universidad de Guanajuato, Depto. de Ingeniería Química, Noria Alta s/n, 36050 Guanajuato, Gto., Mexico
Universidad Autónoma Metropolitana – Cuajimalpa, Depto. de Procesos y Tecnología, Artificios 40, 01120 México, D.F., Mexico
Universidad Autónoma Metropolitana – Iztapalapa, Depto. de Ingeniería de Procesos e Hidráulica, Apdo. 55534, 09340 México, D.F., Mexico
Centro de Investigación en Polímeros – Grupo COMEX, 55885 Tepexpan, Edo. de México, Mexico

r t i c l e i n f o

rticle history:
eceived 30 December 2009
eceived in revised form 23 March 2010

a b s t r a c t

This work addresses the problem of designing an on-line dynamic data processor to estimate and predict
viscosity, conversion, and molecular weight of an alkyd reactor through discrete-delayed measurements
ccepted 23 March 2010

eywords:
lkyd reactor
n-line monitoring
tate estimation

of viscosity. This estimation–prediction scheme is important to monitor, control and stop the batch
operation so that its yield is maximized with a product grade within specifications. Since the alkyd
polymerization involves a complex reaction of synthetic or natural fatty acids with unknown detailed
kinetics, the proposed estimator is designed on the basis of a simple kinetics model with an on-line
adjusted observable parameter. The resulting estimator has a systematic construction-tuning procedure
coupled with a robust convergence criterion, and its functioning and performance is illustrated with
iscrete-delayed measurements experimental data.

. Introduction

Oil-modified polyesters, commonly called alkyd resins, are
mportant synthetic resins in the surface coating industry because
f their low production cost and their convenient utility properties,
uch as good mechanical and chemical resistance, color retention,
loss, and adherence. The industrial production of alkyd resins
s carried out in batch stirred tank reactors where an endother-

ic condensation-type polymerization of synthetic or natural fatty
cids takes place at a constant temperature. The product yield and
uality are monitored throughout the course of the reaction by
eans of discrete-delayed (DD) measurements of conversion and

iscosity. These measurements are employed to correct the opera-
ion by adding reactants, and to decide when to stop the batch in
rder to obtain a product within specifications (i.e., conversion and

iscosity). In particular, the key decision on the batch termination
s taken on the basis of a time-ahead prediction of viscosity, using

preset log–log viscosity–conversion chart in conjunction with
he operators’ experience. Even though this monitoring–control
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scheme has been employed in industrial reactors [1], a more effi-
cient and better reactor operation requires, among other aspects: (i)
the improvement of existing monitoring and control schemes and
their automation, (ii) the development of on-line sensors whose
signals can be correlated to conversion and viscosity, and (iii) the
development of robust multivariable control schemes to track a
prescribed conversion–viscosity nominal trajectory pair.

Regarding the first aspect, this work addresses the on-line
estimation and prediction of conversion, viscosity, and molecular
weight from the DD measurements of viscosity. As for free-radical
polymerization reactors, there are reasonable kinetics models and
advanced model-based estimation, control and process design
schemes [2]; in the case of alkyd reactors, the treatment of these
subjects lags far behind because of the lack of alkyd kinetics
understanding and modeling. In fact, the existing alkyd kinetics
studies [3–5] report simplified or lumped condensation-type kinet-
ics models which are valid either at low or at high conversion,
and this in turn means that the development of industrial mon-
itoring, control and process designs require intensive amounts
of laboratory testing, scaling-up and on-line model calibration
effort. Thus, the lack of adequate alkyd kinetics models and the
DD feature of the viscosity measurement preclude the direct
application of the available advanced nonlinear state estimation
and control techniques which have been successfully applied to

free-radical polymerization reactors; for example, nonlinear geo-
metric observer [6], open-loop-observer [7], extended Kalman filter
[8], and Luenberger nonlinear observer [9]. On the other hand,
calorimetric estimation techniques for reactors with unknown
kinetics [10], the observer-based parameter estimation approach

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:hhee@quijote.ugto.mx
dx.doi.org/10.1016/j.cej.2010.03.055


l Engin

f
a
a
s
a
e
r
s

p
a
t
l
i
e
r
p
t
o
a
c
g
s
s
w
f
t
e

2
p

a
m
i
d
r
l
g
c
s
c

H. Hernández-Escoto et al. / Chemica

or model consistency assessment [11], the geometric observer
pproach for continuous plants with sampled measurements [12],
nd the preliminary work on estimation of alkyd reactors [13],
uggest the possibility of addressing the alkyd reactor estimation
nd time-ahead prediction problem, within a nonlinear geometric
stimation framework where the kinetics uncertainty is robustly
econstructed by means of a dynamic observer driven by DD mea-
urements.

In the present work, the alkyd reactor estimation–prediction
roblem with DD-viscosity measurements is addressed within
nonlinear estimation constructive framework to estimate and

ime-ahead predict conversion, viscosity and molecular weight on-
ine. As a further step of the preliminary study [13], the key forecast-
ng issue, and formal convergence considerations assessment are
mphasized. The point of departure is a simple third-order reaction
ate model whose kinetics constant is regarded as a time-varying
arameter that reflects the effect of the unmodeled dynamics. Then,
he time-varying nonlinear observability of the conversion-kinetics
bservability motion is addressed, establishing the robust solv-
bility of the alkyd reactor estimation problem, and yielding the
onstruction and tuning schemes of a nonlinear robustly conver-
ent estimator with time-ahead prediction capability. The robust
olvability condition bears physical meaning, the estimator con-
truction is systematic, the gain tuning is visualized and executed
ith conventional-type notions and guidelines, and the estimator

unctioning capabilities and limitations are addressed. The func-
ioning and performance of the resulting estimator is shown via
xperimental data obtained from an industrial reactor.

. The alkyd reactor, and its monitoring and control
roblem

In an alkyd reactor (Fig. 1), either synthetic or natural fatty
cids, polybasic acids, and polyols are polymerized via endother-
ic reversible complex polyesterification reactions. The reactor

s equipped with a condensing–decanting system to remove pro-
uced water in order to avoid equilibrium and favor the forward
eaction to produce the polymer. The reactor load has a low

evel of solvent to assist the reaction water withdrawal by drag-
ing the water in an azeotropic solvent–water vapor through the
ondensing–decanting system, where the water is dropped and the
olvent is refluxed to the reactor. The temperature is maintained
onstant by means of a conventional controller.

Fig. 1. Alkyd reactor.
eering Journal 160 (2010) 698–707 699

The key variables that determine the reaction advance and the
polymer product quality are conversion of the acid functional group
(c) (conformed by the fatty and polybasic acids), viscosity (v), and
average molecular weight of the polymer product (M). Their mon-
itoring is done on the basis of laboratory analysis of cold-diluted
samples, usually taken out at periodic sampling times. The react-
ing mixture sample is cooled down and diluted because the hot
reacting mixture viscosity barely decreases with conversion, and is
excessively large for a standard industrial viscometer. In this way,
the obtained measurements of conversion (yc) and viscosity (yv) are
discrete-delayed. Next, a log – log yv-vs. − yc chart is traced and its
trajectory (typically linear) is extrapolated to foresee present-time
and time-ahead values of c and v, with the additional assistance of
the reactor operator experience. Thus, important operation deci-
sions are made: either (i) to correct the reactor motion by addition
of reactants (i.e., a small amount of fatty acids or alcohol) and by
manipulating the reactor temperature, or (ii) to stop the reaction at
an operator-foreseen conversion that is within specifications, and
safely below a critical value associated with the gel point of the
cold polymer product. The goal of stopping the reaction close to
the cold polymer gel point is to obtain a liquid cold polymer prod-
uct. Thus, the batch-to-batch operation objective consists in having
a sufficiently thin bundle of reactor motions that, with regard to a
prescribed nominal operation, is generated by the inexorable pres-
ence of load and operation disturbances. The radius of the motion
bundle determines the variability of the end product properties.

In order to achieve a more efficient and better batch operation,
one must resort to a feedback control; however, the discrete-
delayed feature of the measurements, and basing the monitoring
scheme on operator experience make it difficult (or not straight-
forward); meaning that these monitoring features must first be
attended. Resorting to an estimation approach, the monitoring
problem is translated into one of designing an estimator that, on
the basis of a model, and driven by a sequence of DD measure-
ments (i.e., {yv(t0), yv(t1), . . . , yv(ti)}) each sampling time instant
(ti) on-line yields:

(i) Present-time estimates, at time ti, of conversion c(ti), viscosity
v(ti), and average molecular weight M(ti).

(ii) Time-ahead predictions, over the future horizon [ti, ti + �]
(0 ≤ � ≤ tF − ti), of conversion c(ti + �), viscosity v(ti + �), and
average molecular weight M(ti + �).

3. Reactor and measurement model

Due to the complexity of the polymerization mechanism and
raw materials, a detailed kinetics model is lacking, and simple
and phenomenological/semi-empirical second, and apparent third-
order reaction rate models have been proposed in alkyd kinetics
studies [4,5]; however, none of the mentioned reaction rate models
apply to the entire course of the reaction, and they only describe the
reaction trajectory reasonably well far before the critical gel point.
For the purpose at hand, let us recall the empirical relationships
typical in the coating industry:

(i) a third-order reaction rate (r) model of the acid functional group
conversion [4],

r = �(c, k, ce); �(c, k, ce):=k(1 − c)(ce − c)2, (1a)

(ii) a viscosity–conversion expression in a form suggested by the

free-volume theory [14],

v = �(c, p�), �(c, p�):=a�eb�/(c�−c), P� = [a�, b�, c�]′,

(1b)
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iii) an average molecular weight–conversion relationship [15],

M = �(c, p�), �(c, p�):= 1 + a�c
b� + c�c + d�c2

,

� = [a�, b�, c�, d�]′; (1c)

here the values of the kinetics constant (k), and the parameters
e, p� and p� depend on formulation, and must even be recalibrated
very certain number of batches for the same formulation. In these
roposals, it is ideally assumed that all functional groups of the
ame type (either acid or basic, but of different raw material) are
qually reactive, all functional groups react independently of the
hain length, no side reactions occur, and the reaction rates of the
lemental reactions are lumped in a global reaction rate.

From a standard kinetics modeling perspective, to force the reac-
ion rate model (1a) to adequately describe the entire course of the
eaction, k could be intuitively assumed as a time-varying param-
ter,

(t) = �(c(t), T(t),w(t)) (2)

hich depends on reactor variables such as c and T, as well as on
n unknown number (nw) of unknown ones (w) (i.e., those related
o the polymer architecture, and/or to diffusion phenomena), in an
nknown possibly nonlinear form (�).

Through the combination of acid functional groups and heat
alances with the relationships (1), taking into account unknown
ariables and dynamics, and the assumption given by (2) by incor-
orating the kinetics constant (k) and its tendency (v) as dynamical
tates, and considering the abovementioned monitoring scheme,
he following reactor–measurement model is obtained:

˙ = r(c, k, ce), c(t0) = c0; yv(ti) = �(c(ti−1), p�), ti = ti−1 + D
(3a)

˙ = v, k(t0) = k0; (3b)

˙ = a(t), v(t0) = v0; |a(t)| ≤ εa, (3c)

˙ = fT (c, T, k,�, pT ), T(t0) = T0; yT (t) = T(t), (3d)

˙ = fw(c, T,w, k, u, pw), w(t0) = w0; dimw = nw(unknown);

(3e)

(t) = �(c(t), p�), M(t) = �(c(t), p�), t ∈ [t0, tF ] (3f)

here T is the reactor temperature, and u is the system input. In this
ork, (3d) is called unmodeled T-dynamics, and fT is an unmodeled,
ossibly nonlinear function with a parameter set pT that repre-
ents the temperature change rate. On the other hand, (3e) is the
nknown w-dynamics (i.e., fw is an unknown, possibly nonlinear,
unction with an unknown parameter set pw , which set the change
ate of the unknown states w). v and M are the key interest vari-
bles. ti is the sampling time instant, and D is the sampling time;
0 is the initial time (in which the reaction is initiated), and tF is
he scheduled final time in which the reaction is stopped. In this
ase, a(t) is considered as a bounded input obtained from the sec-
nd directional derivative of the scalar field � (2) with respect to
he vectorial field comprised by the functions r, fT and fw:

(t) := ˛(c(t), k(t), T(t),w(t), u(t), u̇(t), ce, pT,pw),

˛(c, k, T,w,u, u̇, ce, pT , pw) = L2
f �(c, T,w),
f = [r, fT , fw]′

Notice that the viscosity measurement (yv) at instant ti reflects
he reactor state at the past instant ti−1; and this is the only one
roposed for use on-line on the basis of viscosity–conversion (1b);
eering Journal 160 (2010) 698–707

therefore, the on-line conversion measurement could be elimi-
nated, signifying a reduction in costs due to on-line laboratory
analysis.

In vector notation, the reactor model (3) is written as follows:

ẋ = f (x, u(t), pr) + �a(t), x(t0) = x0;

yv(ti) = �(x(ti−1), ps), yT = �Tx, ti = ti−1 + D, (4a)

s(t) = h(x(t), ps), t ∈ [t0, tF ], x = [c, k,v, T,w]′,

s = [v,M]′, pr[ce, pT , pw]′, ps[p�p�]′, f = [r,v, o, fT , fw]′,

h = [�,�]′, � = [0,0,1,0,0]′, �T = [0,0,0,1,0] (4b)

Given the continuous differentiability of the map f and that of the
input a(t), the initial conditions x0, the input u, and the parameters
pr determine a unique reactor state motion,

x(t) = 	x(t, t0, x0, u(·), pr) (5)

4. Estimator design

In this section, on the basis of the reactor model (4), the estima-
tor is designed by the straightforward application of the geometric
estimation approach of Hernandez and Alvarez [12]. This approach
follows a detectability property evaluation of the reactor motion (5)
to underlie the construction, tuning, and convergence conditions
of the estimator driven by the discrete-delayed viscosity measure-
ment.

4.1. Detectability property

According to the indistinguishability-based definition of nonlin-
ear detectability, the reactor motion x(t) (5) is detectable if at each
time (t) the state (x) is uniquely reconstructed from its initial state
(x0), the input–output realization u(t) − yv(t) and its time deriva-
tives. The robust fulfillment of this detectability property implies
the possibility of reconstructing the state via a dynamic nonlinear
estimator.

For the moment, it is assumed that the viscosity measurement
is continuous–instantaneous, and that fT and fw are known, in the
understanding that these (methodologic) unrealistic assumptions
will be removed later. Physically speaking, the reactor detectability
property amounts to the solvability of the following differential
estimation problem: the reconstruction of the reactor motion x(t)
(5) and the trajectory s(t) (4b) on the basis of the data,

DS = {x0, ya(t), p}, ya = [yv, ẏv, ÿv]′, p = [pr, ps]
′ (6)

To solve this problem, the viscosity measurement Eq. (4a)
is recalled in its continuous–instantaneous version, yv(t) =
�(c(t), ps); next, two successive time-derivatives are taken by
replacing the resulting time-derivatives ċ and k̇ (on the right-hand
side) by the map r(c, k, ce) and v ((3a) and (3b)), respectively; finally
the T and w dynamics ((3d) and (3e)), as well as the relationship
s-vs.-x (4b) are recalled, and the following differential–algebraic
system is obtained:

�(xc(t), pe) = ya(t), xc = [c, k,v]′, pe = [ce, p�]′, (7a)

ẋu = fu(xc, xu, pr), xu(t0) = xu0, xu = [T,w]′,

fu = [fT , fw]′, x = [xc, xu]′, (7b)
s(t) = h(xc(t), ps), (7c)

where xc refers to the kinetics state set, and xu to the unmodeled
state set. It can be observed that in the cascade interconnection
between the algebraic part and the differential one, the nonlinear
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ap vector � (A.1) does not depend on the unknown exogenous
nput a(t), and the key interest variable set (s) does only depend on
c.

Since the Jacobian matrix of �, J(xc, pe) (A.2), is nonsingular along
ny kinetics motion xc(t) before the total conversion because the
inetics motion xc(t) is bounded (xc: 0 ≤ c ≤ 1, 0 ≤ k ≤ εk, 0 ≤ v ≤ εv)
y inherent physical limitations, the three-equation algebraic sys-
em (7a) admits, at each time t, a unique and robust solution for
c,

c = 
(ya, pe) (8)

Next, the following differential estimator, driven by the out-
ut measurements ya and the input signals u, is obtained by the
ubstitution of expression (8) into system (7):

c(t) = 
(ya(t), pe), (9a)

˙ u = f ∗u (xu, ya(t), u(t), pr), xu(t0) = xu0,
∗
u (xu, ya, u, pr) = fu(xu, 
(ya, pe), u, pr) (9b)

(t) = h∗(ya(t), pe, p�), h∗(ya, pe, p�) = h(
(ya, pe), p�) (9c)

Additionally, the (∞-norm) condition number (a ∞-norm is con-
idered for understanding purposes),

J ≈ 1
[∂kr(c, ce)]

(10a)

f J(xc, pe) varies along any reactor motion according to the follow-
ng expressions:

J → c2
e as c → 0, and CJ → ∞ as c → 1, (10b)

Analyzing the differential estimator (9) on the framework of
he detectability notion given in [12], the next conclusions follow:
i) the observability matrix J(xc, pe) and its non-singularity estab-
ish that the reactor motion x(t) (5) is robustly partially observable

ith observability index �o = 3, and (ii) the differential equation
9b) is the unobservable dynamics whose unique solution is the
nobservable motion,

u(t) = 	u(t, t0, xu0, ya(·), u(·), pr), (11)

From heat and mass capacity and conservation arguments, as
ell as kinetics considerations in conjunction with the semi-batch
ature of the reactor, the unobservable motion xu(t) (11) is robust
ith respect to errors in the estimator data set DS (6), in the sense

hat: (i) arbitrarily small estimate errors can be obtained by mak-
ng the data errors sufficiently small; and (ii) the estimation errors
row slowly with time and remain bounded. Notice that, through
he condition number value (10), the solvability robustness is good
t the beginning of the reaction, later breaks down as the reaction
ontinues, and becomes poor when total conversion is approached.
t is hoped the observability property is reasonably robust and con-
itioned in the critical period before the gel point (close to the
otal conversion) where the estimation–prediction values are most
eeded.

The robustness of the partial observability property (given by
10)), and the bounded data-bounded state error property of the
nobservable motion xu(t) (11) imply the robust detectability of
ny reactor motion x(t), and this in turn implies: (i) the possibil-
ty of reconstructing the reactor motion x(t) and the trajectory s(t)
ia a robust dynamic estimator with adjustable convergence rate

or the observable state xc and with unobservable dynamics-fixed
onvergence rate for the unobservable state xu; (ii) the differential
stimator (9) constitutes the limiting behavior attainable with any
stimator; and (iii) xc and s can be reconstructed without xu. Finally,
t must be pointed out that this robust detectability assessment and
eering Journal 160 (2010) 698–707 701

its implications are valid for any possible motion in the entire class
of alkyd reactors.

4.2. Estimator construction

Recalling that the interest variables are c, v and M, and that they
only depend on the kinetics state set xc = [c, k, v]′, towards estimator
construction on the basis of the reactor model (3), the detectability
property characterization involves considering a(t) equal to zero,
and dropping the unobservable dynamics ((3d) and (3e)). Next, the
estimator construction followed a straightforward application of
the construction procedure given in [12] with two tenuous modi-
fications:

(i) The estimation sequence was delayed in one-step by
replacing the discrete-instantaneous output estimation error
{y(ti) −�(c(ti), p�)} with the DD one {y(ti) −�(c(ti−1), p�)},
and considering the interval [ti−1, ti], instead of [ti, ti+1], as the
“work” one.

(ii) A time-ahead prediction operator (the reactor model with
a(t) = 0, and without T andw dynamics, initialized at the present
time estimate) was appended.

In this way, the estimator is given by:

ĉ(ti) = 	c(ti, ti−1, ĉ(ti−1), k̂(·), p̂e) + Gc(ĉ(ti−1), p̂e, D, �,ω) (y(ti)

−�(ĉ(ti−1), p̂e)), ĉ(t0) ≈ c(t0) (12a)

k̂(ti) = k̂(ti−1) + D v̂(ti−1) + Gk(ĉ(ti−1), k̂(·), p̂e, D, �,ω) (y(ti)

−�(ĉ(ti−1), p̂e)), k̂(ti) ≈ k(t0) (12b)

v̂(ti) = v̂(ti−1) + Gv(ĉ(ti−1), k̂(ti−1), v̂(ti−1), p̂e, D, �,ω) (y(ti)

−�(ĉ(ti−1), p̂e)), v̂(t0) = 0 (12c)

ĉ(t) = 	c(tt, ti, ĉ(ti), k̂(·), p̂e),

k̂(t) = k̂(ti) + (t − ti)v̂(ti), v̂(t) = v̂(ti) (12d)

v̂(t) = �(ĉ(t), p̂e),

M̂(t) = �(ĉ(t), p̂e), t ∈ [ti, t
∗
F ), ti = ti−1 + D (12e)

where ẑ denotes the estimate of the variable z, 	c is the transition
map of the differential equation, ċ = r(c, k, ce), c(t0) = c0, yielding
c(t) = 	c(t, t0, c0, k(·), ce); and the maps � and � are defined in Eqs.
(1b) and (1c). Gc, Gk and Gv (defined in Appendix A) are nonlinear
gains constructed on the basis of the observability matrix, J(xc, pe)−1

(A.2), which depend on the state, a tuning parameter pair (�, ω)
and the sampling-delay time (D). The tuning parameter pair (�, ω)
is chosen in such a way to have stable viscosity estimation error
dynamics (ε = ŷ− y) (the coefficients ḡ1, ḡ2 and ḡ3 are defined in
Appendix A),

ε(ti+3) + ḡ1(�,ω,D)ε(ti+2) + ḡ2(�,ω,D)ε(ti+1) + ḡ3(�,ω,D)ε(ti)

= qy ≈ 0, (13)

which is quasi-linear, non-interactive and pole-assignable (qLNPA).
� and ω are the damping factor and the characteristic frequency
of this dynamics, respectively; and qy accounts for the nonlinear-
ities that potentially destabilize the dynamics. Due to the qLNPA

feature of the underlying output error dynamics (13), the tuning
of the adjustable parameter pair (�, ω) and the choice (if it was
possible) of the sampling-delay time (D) can be executed with the
standard techniques and notions employed in the conventional-
type design of single-input controllers and single measurement
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lters [16], establishing a clear relationship between the choice of
, ω and D, and the kind of estimation error response.

From the estimator structure, the first part, constituted by
12a)–(12c) and (12e), is visualized as a closed loop-observer that
ields the estimate sequences {ĉ(ti)}, {k̂(ti)}, {v̂(ti)}, {v̂(ti)} and
M̂(ti)} (i = 0, 1, 2, . . .) convergent to the current sequences {c(ti)},
k(ti)}, {v(ti)}, {v(ti)} and {M(ti)}, respectively; and the second part,
onstituted by (12d) and (12e), is visualized as an open-loop-
bserver that yields, at each sampling time instant, the predictions

ˆ(ti + �), k̂(ti + �), v̂(ti + �), v̂(ti + �), and M̂(ti + �) that approx-
mate the actual values of c(ti + �), k(ti + �), v(ti + �), v̂(ti + �) and

(ti + �), respectively, over a horizon time ti + � < t∗F (t∗F is the ulti-
ate value that can take the batch time).

.3. Estimator convergence

In this section, the estimator convergence criteria are stated
nd interpreted, and the main technical arguments are provided
n Appendices B and C.

It is considered that the viscometric observer (12) is run with an
pproximated data set (see (6)),

ˆ S = {x̂c0 , ŷa, p̂e}; x̂c0 = xc0 + ec0 ,
ŷa = ya + ea, p̂e = pe + epe ,

hose errors are bounded,

ec0 | ≤ ıx0 , |ea| ≤ ıy, |epe | ≤ ıp.
On the basis of the output viscosity estimation error dynam-

cs (13), an overshoot factor (a0) due to initial estimation error
ec0 ), and a Lipschitz constant (L) from the nonlinearities enclosed
n qy, are identified. L represents the sensitivity of the estimator
hrough the nonlinear map qy with respect to the estimation errors
ec). As explained in Appendix B, the viscometric estimator yields
onvergent (present time) estimates of c, k, v, v and M if:

(i) the sampling time is chosen below an upper limit D+ that is set
by aoL:

D ≤ D+(aoL); where ∂aoLD
+ < 0 (14a)

ii) once the damping factor � is set sufficiently large (i.e., � = 0.71),
the characteristic frequencyω is chosen within an interval (ω−,
ω+) determined by aoL and D:

ω−(aoL,D)< ω < ω+(aoL,D);

∂aoL orDω
− > 0, ∂aoM orDω

+ < 0 (14b)

According to Condition (i), perturbations in measurement, mod-
ling errors and model nonlinearities impose, through L, an upper
imit D+ for the admissible choices of the sampling-delay time D,
nd such limit is small when L is large. Condition (ii) says that mod-
ling errors and model nonlinearities (through L), and the loss of
nformation (through D) impose a bounded from below and above
nterval (ω−, ω+) of admissible ω values, and that the (ω−, ω+)-
nterval size is small when D or L is large. In fact, there is a value

=ω* in the (ω−, ω+)-interval where the estimation convergence
ate is maximum, and when D = D+, the (ω−, ω+)-interval collapses
nto the point ω*.

With respect to the open-loop convergence for (12d), from the
eactor model (3a)–(3c), the following statements can be drawn:
(i) the conversion motion is uniformly stable since ∂cr(c, k, ce) < 0
for the entire reaction course, and its prediction error is uni-
formly bounded as follows:

|ĉ(ti + �) − c(ti + �)| ≤ �c |ĉ(ti) − c(ti)|, �c > 0. (15a)
eering Journal 160 (2010) 698–707

(ii) the motions k(t) and v(t) potentially grow and are not asymp-
totically stable. However, from batch capacity arguments and
kinetics considerations, it can be said that their prediction
errors remain bounded, during the batch operation as follows:

|k̂(ti + �) − k(ti + �)| ≤ ε∗
k(t

∗
F − ti), ε∗

k(t
∗
F − ti) ≤ εk, (15b)

|v̂(ti + �) − v(ti + �)| ≤ ε∗
v(t∗F − ti), ε∗

v(t∗F − ti) ≤ εv. (15c)

Despite the non-asymptotic convergence of k and v predictions,
the c-prediction is convergent, and since v and M only depend on
c, it can be said that the prediction of these, through (12e), will be
convergent. It can be observed that the performance of c-prediction
depends on the updated c-estimate each sampling instant (ti), and
that the prediction error of c is directly proportional to the estima-
tion error of c (15a): if the c-estimate error decays every sampling
instant, the c-prediction error, starting at every sampling instant,
will be smaller over the time horizon �, and therefore the predic-
tions on viscosity and molecular weight will also be.

Typically the size of the sampling time-interval D is fixed by the
monitoring procedures, and the damping factor is set sufficiently
large (i.e., � = 0.71), with the characteristic frequency ω remaining
as the unique tuning parameter. However, considering that there
is sometimes some freedom in setting D, from the above facts on
estimator convergence, the following tuning guidelines can be dic-
tated:

(i) If there is a large uncertainty in the model parameters ce, p�
and p�, start choosing the smallest D possible.

(ii) Fix � sufficiently large (i.e., 0.71), test the estimator with a large
gain ω (i.e., the dead-beat ω = 0.333D); if non-convergence is
obtained, decrease theω value. Once convergence is observed,
decrease and increase ω to determine the (ω−, ω+) interval,
and the optimumω value for convergence rate. Try with larger
�’s. If there is non-convergence, it means that the size of the
sampling time is longer than the maximum allowed by L.

(iii) If the estimator performance observed is good, consideration
can be given to increasing sampling time, repeating step (ii),
until finding a convenient size for D, and determining D+.

It must be pointed out that if L was quantitatively known, the
optimum choice of D and ω would be easy. However, its determi-
nation goes beyond the scope of this work.

5. Implementation

5.1. Experimental setting and testing motion behavior

To test the performance of the proposed estimator, an exper-
imental alkyd polymerization of fatty acids, phtalic anhydride,
glycerine, and pentaeritritol was considered [13]. The case presents
an operation carried out at constant temperature, at the end of the
reaction (from c = 0.794 up to the batch end). Every 20 min a react-
ing mixture sample was taken out, cooled, diluted and analyzed
to obtain viscosity, acid functional group conversion and polymer
average molecular weight, and this involved an analysis-delay time
of 20 min (D = 20 min). The viscosity measurements are fed off-line
to the estimator in the understanding that the other measurements
of conversion and molecular weight are only used for comparison
purposes. From a nonlinear regression fitting over a set of exper-
imental runs [13] (at the end of reaction courses), the following

viscosity and average molecular weight parameters (see (1b) and
(1c)) were obtained:

p� = [a�, b�, c�]′ = [16.00433,0.10493,1.01388]′

p�=[a�, b�, c�, d�]′ = [−0.32481,0.00536,−0,00561,0.00032]′
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Fig. 2. Performance for (present-time) estimates: (D, ω×200) = (20 min, 4.5).

The kinetic parameter ce was set to 1.1358. These parameter
alues are similar to the ones reported in [13].

.2. Estimator functioning

For the estimator, the initial conversion was set approximately
qual to the actual conversion (c0 = 0.794). To set the initial value
f the reaction rate parameter, its rigorous definition k = k∗A2

0
as recalled, where 1317.6 min−1 × (acid equivalent unit/g)−2 is
typical value for k* [4], and for A0, the initial concentration of

cid equivalents (0.005276 acid equivalent unit/g). Thus, the initial
eaction rate parameter was set to k0 = 0.0367 min−1. The time-
erivative of the reaction rate parameter was set to v0 = 0. The
uning parameter ω was found at 4.5/200 to obtain the best esti-

ator performance.
The experimental data ( ), the present-time estimates (♦), and

he non-adjusted model prediction (· · ·) are shown in Fig. 2, where
DP (discrete data processor) refers to the performance of the
stimator (predictor + corrector). Assuming a frequent (D = 0.5 min)
easurement obtained from a regression of the experimental data,

requent estimates (Continuous Observer (- - -)) are also shown
or comparison purposes, in the understanding that this perfor-

ance is similar to a continuous-measurement estimator. The

stimates converge adequately (beginning at the 3rd step, at
0 min), and performance is comparable with the frequent esti-
ates that almost exactly track the conversion, viscosity and
olecular weight motions. With regard to the reaction rate param-
Fig. 3. Performance for present-time estimates (D = 20 min): (· · · · · ·) ω×200 = 3,
(· · ·♦· · ·) ω×200 = 4.5, (— —) ω×200 = 6.

eter (k) and its time-derivative (v), their estimates do not track
those of the frequent estimates; however, it could be said that the
reaction rate parameter has been sufficiently adjusted to yield good
performance, though not at the end. Its effect can be observed at
the end of the viscosity trajectory (close to the gel point) where
the estimates seem to come slightly unstuck. With respect to the
conversion (c), it can be observed that the estimation error of
the frequent estimates and the discrete estimates cannot be dis-
tinguished; however, in the viscosity trajectory this difference in
convergence can be distinguished, because small variations in con-
version yield large variations in viscosity, and this large variation
is stressed close to the gel point, at the trajectory end.

To obtain the best present-time estimate, several runs were
made scanning the tuning parameter ω×200 from 1 up to 8. In
Fig. 3, estimates for ω×200 = 3 (�), 4.5 (♦) and 6 (�) are shown
and compared with the experimental data ( ). The first value
corresponds to the “threshold” of convergence; lower values do
not yield convergent estimates. As the ω×200 value is increased,
performance improves. However, after ω×200 = 4.5, performance
decreases. Thus, ω×200 = 6 corresponds to the “threshold” of non-
convergence; greater values do not yield convergent estimates. This
corroborates the lower and upper limits for the tuning parameter
ω predicted by Condition (ii) of convergence.
In Figs. 4–6, the time-ahead predictions are shown, starting in
each sampling instant. Remember that time-ahead prediction per-
formance depends on the adequate updating of the state estimates
(each sampling time). In Fig. 4, predictions starting from the initial
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Fig. 4. Performance for (time-ahead) predictions. First steps (t0 = 0, 20, 40, 60 min).

Fig. 5. Performance for (time-ahead) predictions. Intermediate steps (t0 = 80, 100,
140 min).
Fig. 6. Performance for (time-ahead) predictions. Final steps (t0 = 160, 180, 200,
220 min).

and the first three steps (ti = 0, 20, 40, 60 min) are shown. For t = 0,
20 and 40 min, the performance is inadequate. However, once the
present-time estimates converge (at t = 60 min), one can say that
the conversion is adequately updated and the reaction rate param-
eter and its time-derivative are sufficiently adjusted to yield a good
time-ahead prediction. In Fig. 5, time-ahead predictions starting
from intermediate steps (ti = 80, 100, 120, 140) are shown. It can be
observed that the predictions obtained have sufficient information
to predict the time at which the gel point will be reached. Finally, in
Fig. 6, predictions starting from final steps (ti = 160, 180, 200, 220)
are shown. At these times, the estimates have good convergence,
implying a good time-ahead prediction.

6. Conclusions

For a class of batch alkyd reactors with discrete-delayed vis-
cosity measurements, an industrially oriented robust nonlinear
estimator was designed to present-time estimate and to time-
ahead predict the key variables related to production rate and
product quality. The uncertain kinetic model used led to an on-line
estimation or adjustment of the reaction rate parameter. Following
a geometric estimation approach, the estimator was systematically
constructed and tuned, and corresponding robust convergence cri-
teria were obtained. The functioning of the estimator was tested
with industrial-scale experimental data. The performance obtained
is quite acceptable and corroborates the theoretical convergence
findings. Moreover, the information on the evolution of a reaction
rate parameter provides valuable on-line information and insight

into the complex alkyd kinetics. In principle, the performance of
the estimator can be improved by using a more refined reactor-
measurement model. Finally, the proposed estimator could be used
to design a discrete-time controller to track a prescribed nominal
operation.
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ppendix A. Nonlinear maps and gains

Observability map (the maps r and� are defined in (1a) and (1b),
respectively):

�(xc, pe) = [�c(xc, pe), �k(xc, pe), �v(xc, pe)]
′,

xc = [c, k,v]′, pe = [ce, p�]′ (A.1)

where (∂xf = ∂f/∂x)
�c(xc, pe) = �(c, p�), �k(xc, pe) = ∂c�(c, p�)r(c, k, ce)
�v(xc, pe) = ∂2

c2�(c, p�)r(c, k, ce)
2

+ ∂c�(c, p�) (∂cr(c, k, ce)r(c, k, ce) + ∂kr(c, ce)v)

Observability matrix (J(xc, pe) = ∂xc�(xc, pe)):

J(xc, pe) =
[
J11(xc, pe) 0 0
J21(xc, pe) J22(xc, pe) 0
J31(xc, pe) J32(xc, pe) J33(xc, pe)

]
(A.2)

where

J11(xc, pe) = ∂c�k(xc, pe)

J21(xc, pe) = ∂c�k(xc, pe), J22(xc, pe) = ∂k�k(xc, pe)

J31(xc, pe) = ∂c�v(xc, pe), J32(xc, pe) = ∂k�v(xc, pe),

J33(xc, pe) = ∂v�v(xc, pe)

Nonlinear gains:

G(xc, pe,D, �,ω) = [Gc,Gk,Gv]′ = [J(xc, pe)
−1][˝(D)][g(D, �,ω)]

(A.3a)

where

˝(D) =
[

1 D 1/2D2

0 1 D
0 0 1

]
,

g(D, �,ω) = [g1(D, �,ω), g2(D, �,ω), g3(D, �,ω)]′ (A.3b,c)

g1(D, �,ω) = 3 − 2e�� cos(��) − e�,

� =
√

1 − �2, � = −Dω (A.3d,e,f)

g2(D, �,ω) = 1
2D

(3g1(D, �,ω) − 4 + e2��

+ 2e(�+1)� cos(��) + e(2�+1)�) (A.3g)

g3(D, �,ω) = 1
D2

(g1(D, �,ω) − 2 + e2��

+ 2e(�+1)� cos(��) − e(2�+1)�) (A.3h)

Coefficients of the output estimation error dynamics (13):

ḡ1(�,ω,D) = g1(D, �,ω) − 3 (A.4a)

ḡ2(�,ω,D) = 3 − 2g1(D, �,ω) + Dg2(D, �,ω) + D2g3(D, �,ω)

(A.4b)
ḡ3(�,ω,D) = (1/2)D2g3(D, �,ω) − Dg2(D, �,ω) + g1(D, �,ω) − 1

(A.4c)
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Appendix B. Proof for convergence conditions of
present-time estimates

Recall the estimator part that yields the present-time estimates
(12a)–(12c), and rewrite it in its compact vector notation,

x̂c(ti) = 	(ti, ti−1, x̂c(ti−1), p̂e)

+G(x̂c(ti−1), p̂e, D, �,ω)(yv(ti) −�(ti−1)),

 (ti) = �(ti−1), (B.1a)

v̂(ti) = �(x̂c(ti−1), p̂�), M̂(ti) = �(x̂c(ti−1), p̂�). (B.1b)

Consider the coordinate change z = �(xc, pe) associated with the
detectability property (7), and apply it to the reactor model (4a)
and to the estimator (B.1), to take them into the following normal
discrete-time form:

z(ti+1) =˝(D)z(ti) +
∫ ti+1

ti

.˝(ti+1) − �)�ϕ(z(�), ˛(�), pe)d�,

(B.2a)

v(ti) = ız(ti), M(ti) = �∗(z(ti), pe, p�). (B.2b)

�(ti+1) = ˝(D)�(ti) +
∫ ti+1

ti

.˝(ti+1 − �)�ϕ(�(�), ( ˆ̨ = 0), p̂e)d�

+ g(D, �,ω)ı(z(ti) − �(ti)), (B.3a)

v̂(ti) = ı�(ti), M̂(ti) = �∗(�(ti), p̂e, p̂�). (B.3b)

where

yv(ti+1) = v(ti) = �(c(ti), p�) = ız(ti), � = [0,0,1]′; ı = [1,0,0],
ϕ(z,˛, pe) = [(∂c�v)(r) + (∂k�v)(v) + (∂v�v)(˛)]/z=�−1(c,k,v),

�∗(z(ti), pe, p�) = �(xc(ti), p�)/x=�−1(z,pe).

�, v̂ and M̂ are the respective estimates of z, v and M;˝(D) and g(D,
�,ω) are given in (A.3b) and (A.3c). Subtract the reactor model (B.2)
from its estimator (B.3) to obtain the estimation error dynamics:

e(ti+1) = A(D, �,ω)e(ti)

+
∫ ti+1

ti

.˝(ti+1 − �)�q(e(�), e˛(�), ep, z(�), ˛(�), pe)d�

(B.4a)

ev(ti) = ıe(ti), eM(ti) = qM(e(ti), ep, ep� , z(ti), pe, p�) (B.4b)

where

e = � − z, ev = v̂ − v, eM = M̂ −M, ep = p̂e − pe, e˛ = ˆ̨ − ˛, A =˝− gı,
q(e, e˛, ep, z, ˛, pe) = ϕ(� = z + e, ˆ̨ = ˛+ e˛, p̂e = pe + ep) − ϕ(z,˛, pe),
qM(e, ep, ep� , z, pe, p�) = �∗(� = z + e, p̂e = pe + ep, p̂� = p� + ep� ) − �∗(z, pe, p�).

Consider the following bounds (on the basis of the stability of
matrix A and from the continuous differentiability of maps r,�, and
�):

|(A(D, �,ω))i| ≤ ao(�)(�o(D,ω))i,

ao > 0, 0< �o < 1, ∂Dorω�o < 0, (B.5a)

|q(e, e˛, ep, z, ˛, pe)| ≤ lqe |e| + lq˛|e˛| + lqp|ep|, (B.5b)

m m m
|qM(e, ep, ep� , z, pe, p�)| ≤ le |e| + lp |ep| + l� |ep� |, (B.5c)

|e˛| = |˛| ≤ ε˛, |ep| ≤ εp, |ep� | ≤ ε�. (B.5d)

and apply them to the estimation error dynamics via a majorization
procedure (as in [12]), to conclude that the error sequences e(ti),
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v(ti), eM(ti) are bounded as follows:

|e(ti)| ≤ 
(t = ti), |ev(ti)| ≤ 
(t = ti),
eM(ti)| ≤ lme 
(t = ti) + lmp εp + lm� ε�. (B.6a)

here

˙ = −l
 + �(lq˛ε˛ + lqpεp), 
(t0) = ao|e(t0)|, (B.6b)

= D−1 ln(�e), �e = �oeDl
q
e�, � = aoeD�−1

o (B.6c)

Then, the stability condition for the dynamics (B.6b) is given by

> 0 or equivalently by ln(�e)> 0

This condition settles down the convergence of present-time
stimates. Rewrite the stability condition as follows (for simplicity,
q
e is rewritten as L):

(s) = s− b(a,D)es > 0, s = − ln(�o(D,ω)), b(a,D) = aDeD,
a = aoL (B.7)

Through the derivation of F(s), obtain that:

∗ = − ln(b(a,D)) (B.8)

aximizes the function F(s) if

(a,D)e < 1; (B.9)

ince a is a parameter, this expression sets an upper sampling time
imit D+ in such a way that:

(a,D+) = e−1, or D+ = b−1(a, e−1) (B.10)

Moreover, notice that function b (B.7) is directly proportional
o a, meaning that its inverse (B.10) decreases with a. The above is
quivalent to the first convergence condition stated in Section 4.3
or the present-time estimates.

Rewrite the equality version of inequality (B.7):

(s) = s− b(a,D)es = 0

Provided D < D+, this equation has two solutions: s− < s* and
+ > s*, implying the existence of a nonempty set (s−, s+) where s
an take values that fulfill the stability condition given by (B.7).
ext, recalling the s–ω relationship (B.7), the above is equivalent

o saying that there is a set (ω−, ω+) where the tuning parameter
can take values (provided D < D+) to obtain convergent present-

ime estimates; and this is the second convergence condition stated
n Section 4.3 for the present-time estimates.

On the other hand, it can be observed in (B.6) that:

(i) the present-time estimation error sequence of the reactor states
(i.e., c, k and v via e) and viscosity (v) decay exponentially with
an adjustable rate (i.e., via �o), and with an ultimate bounded
offset whose size depends on the parametric errors (εp) and on
the error arisen from assuming that ˆ̨ = 0.

ii) the present-time estimation error sequence of M decays simi-
larly to v with an amplified (i.e., via lme ) and additional (i.e., via
lmp εp + lm� ε�) offset.

ppendix C. Proof for convergence conditions of
ime-ahead predictions

Subtract the augmented reactor model (4a)-(4c) and (4f) from

he estimator part that yields time-ahead predictions (12d) and
12e) to obtain the prediction error dynamics,

˙ c = r∗[ec, ek, ece , c(t), k(t), ce], ec(ti) = eci , ec = ĉ − c
(C.1a)
eering Journal 160 (2010) 698–707

ėk = ev, ek(ti) = eki , ek = k̂ − k (C.1b)

ėv = −˛(t), ev(ti) = ev
i , ev = v̂ − v (C.1c)

ev(t) = �∗[ec(t), ep�, c(t), p�], ev = v̂ − v (C.1d)

em(t) = �∗[ec(t), ep� , c(t), ��], em = m̂−m (C.1e)

where

r∗(ec, ek, ece , c, k, ce) = r(ĉ = c + ec, k̂ = k + ek, ĉe = ce + ece )
− r(c, k, ce)

�∗(ec, ep�, c, p�) = �(ĉ = c + ec, p̂� = p� + ep� ) −�(c, p�)

�∗(ec, ep� , c, p�) = �(ĉ = c + ec, p̂� = p� + ep� ) − �(c, p�)

The convergence of the reactor state prediction is proved by
establishing the stability of the prediction error dynamics (C.1)
by means of the indirect (linearization) Lyapunov method [17].
Then, linearize the differential equation (C.1a) about (ec, ek, ece )

′ =
(0,0,0)′, and hold the other equations,

ėc = r∗c (t)ec + r∗k(t)ek + r∗ce (t)ece , ec(ti) = eci , t ∈ [ti, t
∗
F )

(C.2a)

ėk = ev, ek(ti) = eki , (C.2b)

ėv = −˛(t), ev(ti) = ev
i , (C.2c)

ev(t) = �∗[ec(t), ep�, c(t), p�], (C.2d)

em(t) = �∗[ec(t), ep� , c(t), p�], (C.2e)

where

r∗c (t) = ∂ec r
∗[c(t), k(t), ce] = ∂cr[c(t), k(t), ce]

= −k(t)[ce − c(t)][ce + 2 − 3c(t)], r∗c (t)< 0 (C.3a)

r∗k(t) = ∂ek r
∗[c(t), k(t), ce] = ∂kr[c(t), ce]

= [1 − c(t)][ce − c(t)]2, r∗k(t)> 0 (C.3b)

r∗ce (t) = ∂cce r
∗[c(t), k(t), ce] = ∂ce r[c(t), k(t), ce]

= 2k(t)[1 − c(t)][ce − c(t)], r∗ce (t)> 0 (C.3c)

and

|r∗c (t)| ≤ ce(ce + 2)k(t), 0< r∗k(t)< c2
e , 0< r∗ce (t)< 2cek(t);

|r∗c (t)|> r∗k(t), |r∗c (t)|> r∗ce (t) (C.3d)

Integrate from ti to t = ti + �

ec(t) = ˇ(t, ti)e
c
i +

∫ t

ti

.ˇ(t, 
)r∗k(
)

[
eki + evi (
 − ti)

+
∫ 


ti

·
∫ s

ti

· − ˛(s)ds dz

]
d
 +

∫ t

ti

.ˇ(t, 
)r∗ce (
)eced


(C.4a)

ek(t) = eki + ev
i (
 − ti) +

∫ t

ti

.

∫ 


ti

.− ˛(s)ds d
 t ∈ [ti, t
∗
F ) (C.4b)

v

∫ t
ev(t) = ei +
ti

.− ˛(
)d
 (C.4c)

ev(t) = �∗[ec(t), ep�, c(t), p�], (C.4d)

em(t) = �∗[ec(t), ep� , c(t), p�], (C.4e)
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here

(t, ti) = exp

[∫ t

ti

.r∗c (
)d
,

]
(C.5)

Notice the ˇ function is decreasing because of r∗c (t)< 0. Take
orms, taking into account that:

ˇ(t, ti)| = exp

[∫ t

ti

.r∗c (
)d


]
≤ e−�(t,ti), |˛(t)| ≤ ε˛, |ece | ≤ εc,

(C.6a)

�∗(ec, ep�, c, p�)| ≤ l�c |ec | + l�ε�, ε� = |p̂� − p�|, (C.6b)

�∗(ec, ep�, c, p�)| ≤ l�c |ec | + l�ε�, ε� = |p̂� − p�|, (C.6c)

nd obtain that the prediction error motions are bounded as fol-
ows:

ec(t)| ≤ e−�(t,ti)|eci | +
∫ t

ti

.e−�(t,
)|r∗k(
)|
[
|eki | + |evi |(
 − ti)

+ (1/2)ε˛(
 − ti)2]d
 +
∫ t

ti

.e−�(t,
)|r∗ce (
)|εcd
 (C.7a)

ek(t)| ≤ |eki | + ev
i |(t − ti) + (1/2)ε˛(t − ti)2, t ∈ [ti, t

∗
F ) (C.7b)

ev(t)| ≤ |ev
i | + ε˛(t − ti), (C.7c)

ev(t)| ≤ l�c |ec(t)| + l�ε�, (C.7d)

em(t)| ≤ l�c ec(t)| + l�ε�, (C.7e)

Then, it can be observed that:

(i) From inequalities (C.7b) and (C.7c), the prediction error motion
corresponding to the k and v states is growing with time. How-
ever, since the batch time is finite (t∗F ), and assuming that the
present-time estimation errors of k and v (ek

i
, ev
i
) are sufficiently

small (or the present-time state estimates are convergent), it
can be observed that the prediction error will be bounded as
follows:

|ek(t)| ≤ εk(t
∗
F − ti),

εk(t
∗
F − ti) = |eki | + |ev

i |(t∗F − ti) + (1/2)ε˛(t∗F − ti)2, ti ≤ t ≤ t∗F
(C.8a)

|ev(t)| ≤ εk(t∗F − ti), εk(t
∗
F − ti) = |ev

i | + ε˛(t∗F − ti) (C.8b)
Consequently, it can be said that the prediction error motion
will stay sufficiently close to the point (ek, ev)′ = (0, 0); conclud-
ing that the prediction error motion of k and v is practically
stable, and therefore the k and v predictions are practically
convergent.

[

[
[

[
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(ii) From inequality (C.7a), the original nonlinear error dynamics
of conversion (C.1a) is exponentially stable with a decaying
rate fixed by the kinetics (i.e., via r∗c (t)), and with an ultimate
offset (i.e., second term on the right-hand side of (C.7a) whose
size depends on the present-time estimate error of the kinetics
variables (i.e., via ek

i
and ev

i
), the parametric errors (εp), and

on the error arisen from making ˆ̨ = 0. It can be observed
that the ultimate offset can grow with time, however, besides
the fact that |r∗c (t)|> r∗�(t) and |r∗c (t)|> r∗ce (t), the batch time
is finite; then, the second term will not surpass a certain
value (see (C.8)). Invoking the Lyapunov linearization method,
this property holds for the original nonlinear prediction
error dynamic (C.1a) in the close vicinity of (ec, ek, ece )

′ =
(0,0,0)′, and therefore the conversion prediction is
convergent.

(iii) From (C.7c) and (C.7d), since the prediction error motion is
decreasing with an ultimate bounded offset, the viscosity and
AMW prediction errors are decreasing in the same way as the
conversion one, but with an amplified offset due to parametric
errors (i.e., via l�c , l�ε�, l�c , and l�ε�).
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